A Comparison and Analysis of Name Matching Algorithms
نویسنده
چکیده
Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching. Keywords—Data mining, name matching algorithm, nominal data, searching system.
منابع مشابه
Fractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms
In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملNeighborhood matrix: A new idea in matching of two dimensional gel images
Automated data analysis and pattern recognition techniques are the requirements of biological and proteomicsresearch studies. The analysis of proteins consists of some stages among which the analysis of two dimensionalelectrophoresis (2-DE) images is crucial. The aim of image capturing is to generate a Photostat that can be used infuture works such as image comparison. The researchers introduce...
متن کاملA Survey of Concurrency Control Algorithms in the Operating Systems
Concurrency control is one of the important problems in operation systems. Various studies have been reported to present different algorithms to address this problem, although a few attempts have been made to represent an overall view of the characteristics of these algorithms and comparison of their capabilities to each other. This paper presents a survey of the current methods for controlling...
متن کاملA Survey of Concurrency Control Algorithms in the Operating Systems
Concurrency control is one of the important problems in operation systems. Various studies have been reported to present different algorithms to address this problem, although a few attempts have been made to represent an overall view of the characteristics of these algorithms and comparison of their capabilities to each other. This paper presents a survey of the current methods for controlling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007